Tháng: Tháng Mười 2016

Định nghĩa và tính chất của cấp số cộng

Định nghĩa cấp số cộng, Số hạng tổng quát của cấp số cộng, Tính chất của cấp số cộng, Tổng n số hạng đầu của cấp số cộng 1. Định nghĩa cấp số cộng $\displaystyle {{u}_{n}}$ là cấp số cộng <=> $\displaystyle {{u}_{{n+1}}}={{u}_{n}}+d$ với n ∈ N* , d là hằng số. Công sai d = $\displaystyle {{u}_{{n+1}}}-{{u}_{n}}$ 2. Số […]

Lý thuyết logarit

Lý thuyết logarit 1. Định nghĩa logarit Cho hai số dương a, b với a#1. Nghiệm duy nhất của phương trình $\displaystyle a_{{}}^{x}=b$ được gọi là $\displaystyle {{\log }_{a}}b$ ( tức là số α có tính chất là $\displaystyle a_{{}}^{\alpha }=b$). 2. Logarit thập phân và logarit tự nhiên Có 2 loại logarit đó là: […]

Khái niệm lũy thừa, cách tính lũy thừa của một số

Lý thuyết lũy thừa, cách tính lũy thừa của một số 1. Khái niệm lũy thừa Lũy thừa là các biểu thức dạng $\displaystyle x_{{}}^{\alpha }$, trong đó x, α là những số thực, x được gọi là cơ số và α được gọi là số mũ. Lũy thừa có các tính chất sau: 2. Các định […]

Tính đơn điệu của hàm số y = f(x)

Tính đơn điệu của hàm số y = f(x) 1. Định nghĩa hàm số tăng, hàm số giảm Hàm số f xác định trên K. Với mọi $\displaystyle {{x}_{1}},{{x}_{2}}$ thuộc K và $\displaystyle {{x}_{1}}>{{x}_{2}}$ – Nếu $\displaystyle f({{x}_{1}})>f({{x}_{2}})$ thì hàm số y = f(x) tăng trên K – Nếu $\displaystyle f({{x}_{1}})<f({{x}_{2}})$ thì hàm số y […]

Sự đồng biến, sự nghịch biến của hàm số

Tóm tắt lý thuyết sự đồng biến, sự nghịch biến của hàm số Ta kí hiệu K là một khoảng, một đoạn hoặc một nửa cho trước. 1. Khái niệm đồng biến, nghịch biến của hàm số y = f(x) Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀ $\displaystyle {{x}_{1}},{{x}_{2}}$ ∈ […]

Lý thuyết giá trị nhỏ nhất, giá trị lớn nhất của hàm số

Lý thuyết giá trị nhỏ nhất, giá trị lớn nhất của hàm số Tóm tắt kiến thức 1. Khái niệm giá trị nhỏ nhất và giá trị lớn nhất của hàm số Cho hàm số y = f(x) xác định trên tập D. – Số m là giá trị nhỏ nhất (GTNN) của hàm số […]

Bảng phân bố tần số và tần suất

Lý thuyết bảng phân bố tần số và tần suất. 1. Khái niệm dấu hiệu, giá trị của dấu hiệu Vấn đề người điều tra nghiên cứu quan tâm như: năng suất của một loại cây trồng, chiều cao và trọng lượng của thanh niên lứa tuổi 18… được gọi là dấu hiệu. Người điều […]

Lý thuyết biểu đồ trong toán học

Lý thuyết biểu đồ trong toán học. 1. Khái niệm biểu đồ tần suất hình cột Để mô tả bảng phân bố tần suất ghép lớp, người ta dựng các cột thẳng đứng (xếp liền nhau hoặc rời nhau) có chiều rộng cột hàng độ dài của lớp, chiều cao cột bằng tần suất của lớp […]

Bất phương trình và hệ bất phương trình một ẩn

Lý thuyết về bất phương trình và hệ bất phương trình một ẩn. 1. Khái niệm bất phương trình một ẩn Bất phương trình một ẩn là một mệnh đề chứa biến có một trong các dạng f(x) > g(x), f(x) < g(x), f(x) ≥ g(x), f(x) ≤ g(x), trong đó f(x), g(x) là các biểu […]

Lý thuyết đại cương về phương trình

Tổng quát lý thuyết đại cương về phương trình 1. Định nghĩa phương trình một ẩn – Phương trình một ẩn số với biến x là một mệnh đề chứa biến có dạng: f(x) = g(x) (1) trong đó f(x), g(x) là các biểu thức với biến số x. Ta gọi f(x) là vế trái […]

Phương trình quy về phương trình bậc nhất, bậc hai

Lý thuyết giải phương trình quy về phương trình bậc nhất, phương trình bậc hai Tóm tắt lý thuyết giải các phương trình: 1. Giải và biện luận phương trình có dạng ax + b = 0 (1) – Nếu a≠ 0 : (1) có nghiệm duy nhất $\displaystyle x=\frac{{-b}}{a}$ – Nếu a = 0; […]

Phương trình và hệ phương trình bậc nhất nhiều ẩn

Tóm tắt lý thuyết phương trình và hệ phương trình bậc nhất nhiều ẩn 1. Phương trình bậc nhất hai ẩn Phương trình bậc nhất 2 ẩn x và y có dạng: ax + by =c (1) trong đó: a, b và c là các số đã cho, với ab ≠ 0 Nếu có cặp […]

Lý thuyết phương sai và độ lệch chuẩn

Lý thuyết phương sai và độ lệch chuẩn 1. Phương sai là gì? Phương sai của một bảng số liệu là số đặc trưng cho độ phân tán của các số liệu so với số trung bình của nó. Phương sai của bảng thống kê dấu hiệu x, kí hiệu là $\displaystyle S_{x}^{2}$. Công thức […]

Gia sư Hà Nội Copyright © 2020 DMCA.com Protection Status Gia sư Hà Nội