4 phương pháp giải phương trình vô tỷ – Trung tâm Gia sư Hà Nội

Để giải một phương trình vô tỷ thì có nhiều cách giải, tuy nhiên trong chương trình Toán THCS thì Timgiasuhanoi.com chỉ nêu ra 4 phương pháp dưới đây.

Đó là các phương pháp: Đánh giá, đặt ẩn phụ, biến đổi tương đương và điều kiện cần và đủ.
Chú ý: Đây là các phương pháp chung nhất để giải phương trình vô tỷ ở cấp 2. Và chúng ta áp dụng cách giải qua các ví dụ cho mỗi phương pháp.

1. Phương pháp đánh giá

Ví dụ: Giải phương trình: \displaystyle \sqrt{3{{x}^{2}}+6x+7}+\sqrt{5{{x}^{2}}+10x+14} = 4 – 2x – x2         (*)
Giải:
Ta nhận thấy:
Vế trái:
VT = \displaystyle \sqrt{3{{x}^{2}}+6x+7}+\sqrt{5{{x}^{2}}+10x+14}
VT = \displaystyle \sqrt{3{{\left( x+1 \right)}^{2}}+4}\displaystyle \sqrt{5{{\left( x+1 \right)}^{2}}+9}\ge \sqrt{4}+\sqrt{9} = 5
Vế phải:
VP = 4 – 2x –x2 = 5 – (x+1)2 ≤ 5.
Vậy phương trình (*) đã cho có nghiệm khi và chỉ khi VT = VP = 5.
⇔ x+ 1 = 0 ⇔ x = -1.

2. Phương pháp đặt ẩn phụ

Ví dụ: Giải phương trình: \displaystyle \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=3
Giải:
Điều kiện: -1 ≤ x ≤ 8
Đặt \displaystyle t=\sqrt{1+x}+\sqrt{8-x} (với t ≥ 0)
⇒ \displaystyle t_{{}}^{2}=1+x+8-x+2\sqrt{(1+x)(8-x)}
⇒ \displaystyle \sqrt{(1+x)(8-x)}=\frac{t_{{}}^{2}-9}{2}
Khi đó phương trình đã cho trở thành:
\displaystyle t+\frac{t_{{}}^{2}-9}{2}=3
⇔ \displaystyle t_{{}}^{2}+2t-15=0
⇔ \displaystyle \left[ \begin{array}{l}t=-5\\t=3\end{array} \right.
Loại t = -5 do < 0
Với t = 3 ta có: \displaystyle \sqrt{1+x}+\sqrt{8-x} = 3
⇔ \displaystyle 1+x+8-x+2\sqrt{(1+x)(8-x)} = 9
⇔ \displaystyle \sqrt{(1+x)(8-x)} = 0
⇔  \displaystyle \left[ \begin{array}{l}x=-1\\x=8\end{array} \right. (thỏa mãn -1 ≤ x ≤ 8)
Vậy phương trình đã cho có nghiệm là: x= -1 và x2 = 8
*Cách khác: Các em tự giải

3. Phương pháp biến đổi tương đương

Phương pháp biến đổi tương đương được áp dụng cho 2 dạng phương trình vô tỷ:
Dạng 1: \displaystyle \sqrt{f(x)}=g(x)\Leftrightarrow \left\{ \begin{array}{l}g(x)\ge 0\\f(x)=g_{{}}^{2}(x)\end{array} \right.
Dạng 2: \displaystyle \sqrt{f(x)}=\sqrt{g(x)}\Leftrightarrow \left\{ \begin{array}{l}g(x)\ge 0\\f(x)=g(x)\end{array} \right.
4 phương pháp giải phương trình vô tỷ - Trung tâm Gia sư Hà Nội-1
4 phương pháp giải phương trình vô tỷ - Trung tâm Gia sư Hà Nội-2

4. Phương pháp điều kiện cần và đủ

VD1: Tìm m để phương trình sau có nghiệm duy nhất:
\displaystyle \sqrt{4-x}+\sqrt{x+5}=m
Giải: Điều kiện cần:
Nhận thấy nếu phương trình có nghiệm x0 thì (-1 – x0 ) cũng là nghiệm của phương trình. Do đó để phương trình có nghiệm duy nhất thì:
x0 = -1 – x0 ⇔ \displaystyle {{x}_{0}}=-\frac{1}{2}
Thay \displaystyle {{x}_{0}}=-\frac{1}{2} vào phương trình đã cho ta được: \displaystyle m=3\sqrt{2}
Điều kiện đủ:
Với \displaystyle m=3\sqrt{2} phương trình đã cho trở thành:
4 phương pháp giải phương trình vô tỷ - Trung tâm Gia sư Hà Nội-3
Vậy với \displaystyle m=3\sqrt{2} thì phương trình đã cho có nghiệm duy nhất.

Ghi chú:

Mọi thắc mắc, yêu cầu cần giải đáp vui lòng gửi về email giasuhanoitrungtam@gmail.com hoặc inbox fanpage Trung tâm Gia sư Hà Nội dưới đây:

Trung tâm Gia sư Hà Nội

Cơ sở 1: Ngõ 371/3 Đê La Thành, Hà Nội

Cơ sở 2: Thôn Đồng, Sơn Đồng, Hoài Đức, Hà Nội

Hotline: 0987 109 591

Gia sư Hà Nội © 2009 Gia sư Hà Nội