Bài tập phân tích đa thức thành nhân tử

Trung tâm Gia sư Hà Nội gửi tới các em một số bài bài tập phân tích đa thức thành nhân tử với các dạng đã được học ở bài Phương pháp phân tích đa thức thành nhân tử.

Bản chất : Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Ứng dụng :Tính nhanh, giải các bài toán về tìm x, giải phương trình, giải bài toán bằng cách lập phương trình, rút gọn biểu thức.

Dạng 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Phương pháp : Giả sử cần phân tích đa thức A + B thành nhân tử, ta đi xác định trong A và B có nhân tử chung C, khi đó.
A + B = C.A1 + C.B1 = C(A1 + B1)
Bài toán 1: Phân tích thành nhân tử.
a) 20x – 5y                                                    e) 4x2y – 8xy2 + 10x2y2
b) 5x(x – 1) – 3x(x – 1)                                  g) 20x2y – 12x3
c) x(x + y) – 6x – 6y                                       h) 8x4 + 12x2y4 – 16x3y4
d) 6x3 – 9x2                                                   k) 4xy2 + 8xyz
Bài toán 2 : Phân tích đa thức sau thành nhân tử.
a) 3x(x +1) – 5y(x + 1)                                   h) 3x3(2y – 3z) – 15x(2y – 3z)2
b) 3x(x – 6) – 2(x – 6)                                    k) 3x(z + 2) + 5(-x – 2)
c) 4y(x – 1) – (1 – x)                                      l) 18x2(3 + x) + 3(x + 3)
d) (x – 3)3 + 3 – x                                          m) 14x2y – 21xy2 + 28x2y2
e) 7x(x – y) – (y – x)                                      n) 10x(x – y) – 8y(y – x)
Bài toán 3 : Tìm x biết.
a) 4x(x + 1) = 8(x + 1)                                    g) 5x(x – 2000) – x + 2000 = 0
b) x(x – 1) – 2(1 – x) = 0                                 h) x2 – 4x = 0
c) 2x(x – 2) – (2 – x)2 = 0                                k) (1 – x)2 – 1 + x = 0
d) (x – 3)3 + 3 – x = 0                                      m) x + 6x2 = 0
e) 5x(x – 2) – (2 – x) = 0                                  n) (x + 1) = (x + 1)2

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Phương pháp : Biến đổi đa thức bạn đầu về dạng quen thuộc của hằng đẳng thức, sau đó sử dụng hằng đẳng thức để làm xuất hiên nhân tử chung.
Bài toán 1 : Phân tích đa thức thành nhân tử.
a) 4x2 – 1
b) 25x2 – 0,09
c) 9x2 – \displaystyle \frac{1}{4}
d) (x – y)2 – 4
e) 9 – (x – y)2
f) (x2 + 4)2 – 16x2
Bài toán 2 : Phân tích đa thức sau thành nhân tử :
a) x4 – y4
b) x2 – 3y2
c) (3x – 2y)2 – (2x – 3y)2
d) 9(x – y)2 – 4(x + y)2
e) (4x2 – 4x + 1) – (x + 1)2
f) x3 + 27
g) 27x3 – 0,001
h) 125x3 – 1
Bài toán 3 : Phân tích đa thức sau thành nhân tử.
a) x4 + 2x2 + 1
b) 4x2 – 12xy + 9y2
c) -x2 – 2xy – y2
d) (x + y)2 – 2(x + y) + 1
e) x3 – 3x2 + 3x – 1
g) x3 + 6x2 + 12x + 8
h) x3 + 1 – x2 – x
k) (x + y)3 – x3 – y3
Bài toán 4 : Tìm x biết.
a) 4x2 – 49 = 0
b) x2 + 36 = 12x
c) \displaystyle \frac{1}{16}x2 – x + 4 = 0
d) x3 -3√3x2 + 9x – 3√3 = 0

Dạng 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử

Bài toàn 1 : Phân tích đa thức sau thành nhân tử.
a) x2 – x – y2 – y
b) x2 – 2xy + y2 – z2
c) 5x – 5y + ax – ay
d) a3 – a2x – ay + xy
e) 4x2 – y2 + 4x + 1
f) x3 – x + y3 – y
Bài toán 2 : Phân tích  các đa thức sau thành nhân tử:
a) 10(- y) – 8y(y  – )                           b)  2y + 3z + 6y + y
Bài toán 3 : Phân tích các đa thức sau thành nhân tử:
a) x2 – y2 – 2x + 2y                             b) 2x + 2y – x2 – xy
c) 3a2 – 6ab + 3b2 – 12c2                   d) x2 – 25 + y2 + 2xy
e) a2 + 2ab + b2 – ac – bc                   f)  x2 – 2x – 4y2 – 4y
g) x2y – x3 – 9y + 9x                           h) x2(x -1) + 16(1- x)

Dạng 4 : Phương pháp thêm, bớt một hạng tử

Ví dụ :
a) y4 + 64 = y4 + 16y2 + 64 16y2
= (y2 + 8)2 – (4y)2
= (y2 + 8 4y)(y2 + 8 + 4y)
b) x2 + 4 = x2 + 4x + 4 4x = (x + 2)2 4x
= (x + 2)2\displaystyle {{\left( 2\sqrt{x} \right)}^{2}} = \displaystyle \left( x-2\sqrt{x}+2 \right)\left( x+2\sqrt{x}+2 \right)
Bài toán 1 : phân tích đa thức thành nhân tử:
a) x4 + 16
b) x4y4 + 64
c) x4y4 + 4
d) 4x4y4 + 1
e) x4 + 1
f) x8 + x + 1
g) x8 + x7 + 1
h) x8 + 3x4 + 1
k) x4 + 4y4
Bài toán 2 : phân tích đa thức thành nhân tử :
a) a2 – b2 – 2x(a – b)
b) a2 – b2 – 2x(a + b)
Bài toán 3 : Phân tích đa thức sau thành nhân tử :
a) x4y4 + 4
b) 4x4 + 1
c) 64x4 + 1
d) x4 + 64

Dạng 5 : Phân tích đa thức thành nhân tử bằng phương cách phối hợp nhiều phương pháp

Bài toán 1 : Phân tích đa thức thành nhân tử :
a) 16x4(x – y) – x + y
b) 2x3y – 2xy3 – 4xy2 – 2xy
c) x(y2 – z2) + y(z2 – x2) + z(x2 – y2)
Bài toán 2 : Phân tích các đa thức sau thành nhân tử :
a) 16x3 – 54y3
b) 5x2 – 5y2
c) 16x3y + yz3
d) 2x4 – 32
Bài toán 3 : Phân tích đa thức sau thành nhân tử :
a) 4x – 4y + x2 – 2xy + y2
b) x4 – 4x3 – 8x2 + 8x
c) x3 + x2 – 4x – 4
d) x4 – x2 + 2x – 1
e) x4 + x3 + x2 + 1
f) x3 – 4x2 + 4x – 1
Bài toán 4 : Phân tích đa thức sau thành nhân tử :
a) x3 + x2y – xy2 – y3
b) x2y2 + 1 – x2 – y2
c) x2 – y2 – 4x + 4y
d) x2 – y2 – 2x – 2y
e) x2 – y2 – 2x – 2y
f) x3 – y3 – 3x + 3y
Bài toán 5 : Tìm  x, biết.
a) x3 – x2 – x + 1 = 0
b) (2x3 – 3)2 – (4x2 – 9) = 0
c) x4 + 2x3 – 6x – 9 = 0
d) 2(x + 5) – x2 – 5x = 0
Bài toán 6 : Tìm giá trị nhỏ nhất của biểu thức :
a) A = x2 – x + 1                                                      d) D = x2 + y2 – 4(x + y) + 16
b) B = 4x2 + y2 – 4x – 2y + 3                                    e) E = x2 + 5x + 8
c) C = x2 + x + 1                                                      g) G = 2x2 + 8x + 9
Bài toán 7 : Tìm giá trị lớn nhất của biểu thức :
a) A = -4x2 – 12x
b) B = 3 – 4x – x2
c) C = x + 2y2 + 2xy – 2y
d) D = 2x – 2 – 3x2
e) E = 7 – x2 – y2 – 2(x + y)

Ghi chú:

Mọi thắc mắc, yêu cầu cần giải đáp vui lòng gửi về email giasuhanoitrungtam@gmail.com hoặc inbox fanpage Trung tâm Gia sư Hà Nội dưới đây:

Updated: 17/09/2017 — 9:57 sáng
Gia sư Hà Nội © 2009 Gia sư Hà Nội
Có thể bạn quan tâm
x