Khái niệm, diện tích xung quanh và thể tích của hình nón, hình nón cụt

1. Khái niệm hình nón

Khi quay một tam giác vuông góc AOC một vòng quanh cạnh góc vuông OA cố định thì được một hình nón.
Khái niệm, diện tích xung quanh và thể tích của hình nón, hình nón cụt-1
– Cạnh OC tạo nên đáy của hình nón, là một hình nón tâm O.
– Cạnh AC quét lên mặt xung quanh của hình nón, mỗi vị trí của nó được gọi là một đường sinh, chẳng hạn AD là một đường sinh .
– A là đỉnh và AO là đường cao của hình nón.

2. Diện tích xung quanh, diện tích toàn phần của hình nón

Diện tích xung quanh của hình nón: \displaystyle {{S}_{xq}}=2\pi rl
Diện tích toàn phần của hình nón: \displaystyle {{S}_{tp}}=\pi rl+\pi r_{{}}^{2}
(r là bán kính đường tròn đáy, l là đường sinh)

3. Thể tích hình nón

Công thức tính thể tích hình nón: Vnón = \displaystyle \pi r_{{}}^{2}h
Diện tích toàn phần của hình nón: \displaystyle {{S}_{tp}}=\pi rl+\pi r_{{}}^{2}
(r là bán kính đường tròn đáy, l là đường sinh)
Khái niệm, diện tích xung quanh và thể tích của hình nón, hình nón cụt-2

4. Thể tích hình nón cụt

Công thức tính thể tích hình nón: Vnón = \displaystyle \frac{1}{3}\pi r_{{}}^{2}h

Ghi chú:

Mọi thắc mắc, yêu cầu cần giải đáp vui lòng gửi về email giasuhanoitrungtam@gmail.com hoặc inbox fanpage Trung tâm Gia sư Hà Nội dưới đây:

Gia sư Hà Nội © 2009 Gia sư Hà Nội
Có thể bạn quan tâm
x