Lý thuyết nguyên hàm

Ở đầu chương 3 này các em sẽ được học về nguyên hàm, chúng ta sẽ cùng nhau tìm hiểu về định nghĩa, tính chất và các định lý của nguyên hàm.

Cùng tìm hiểu về:

1. Định nghĩa nguyên hàm

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R.
Cho hàm số f(x) xác định trên K.
Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
*Định lí
a) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x)+C cũng là một nguyên hàm của hàm số f(x) trên K.
b) Ngược lại, nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C với C là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số f(x) là ∫f(x)dx
Khi đó : ∫f(x)dx =F(x) + C , C ∈ R.

2. Tính chất của nguyên hàm

∫f(x)dx = F(x) + C, C ∈ R.
∫kf(x)dx =k ∫f(x)dx (với k là hằng số khác 0)
∫(f(x) ± g(x)) = ∫f(x)dx ± ∫g(x)dx
Sự tồn tại nguyên hàm:
*Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
Ta có bảng nguyên hàm của các hàm số thường gặp dưới đây:

Lý thuyết nguyên hàm

3. Phương pháp tìm nguyên hàm

a) Tìm nguyên hàm theo bảng nguyên hàm
b) Phương pháp biến đổi số
Định lí 1. Nếu f(u)du = F(u)+ C và u=u(x) là hàm số có đạo hàm liên tục thì: f(u(x))(x) = F(u(x)) + C
Hệ quả: Nếu u= ax +b (a≠0) thì ta có f(ax+b)dx = F(ax+b) + C

Ghi chú:

Mọi thắc mắc, yêu cầu cần giải đáp vui lòng gửi về email giasuhanoitrungtam@gmail.com hoặc inbox fanpage Trung tâm Gia sư Hà Nội dưới đây:

Trung tâm Gia sư Hà Nội

Cơ sở 1: Ngõ 371/3 Đê La Thành, Hà Nội

Cơ sở 2: Thôn Đồng, Sơn Đồng, Hoài Đức, Hà Nội

Hotline: 0987 109 591

Gia sư Hà Nội © 2009 Gia sư Hà Nội